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Publications

This presentation consists of materials from these papers:

1. T. Le and L. Vese, Image decomposition using total variation
and div(bmo), Multiscale Modeling and Simulation, SIAM
Interdisciplinary Journal, vol.4, num. 2, pp. 390-423,
June 2005.

2. J. Garnett, T. Le, and L. Vese, Image decompositions using
bounded variation and homogeneous Besov spaces, UCLA CAM
Report 05-57, Oct. 2005.
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Variational image decomposition

Let f be periodic with the fundamental domain
Ω = [−1

2 , 1
2 ]2 ⊂ R

2. Denote L2 for L2(Ω), etc.
A variational method for decomposing f into u + v,

u is piecewise smooth,

v is oscillatory or noise,

can be given by an energy minimization problem

inf
(u,v)∈X1×X2

{K(u, v) = F1(u) + λF2(v) : f = u + v} , where

F1, F2 ≥ 0 are functionals on spaces of functions or
distributions X1, X2, respectively. λ > 0.

A good model for K is given by a choice of X1 and X2

so that F1(u) << F2(u), and F1(v) >> F2(v).
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Mumford-Shah (1989)

inf
(u,v)∈SBV ×L2

{[

∫

Ω\Ju

|∇u|2dx + αH1(Ju)

]

+ λ‖v‖2
L2 , f = u + v

}

.

f ∈ L∞ ⊂ L2 is split into u ∈ SBV , a piecewise-smooth
function with its discontinuity set Ju composed of a
union of curves, and v = f − u ∈ L2 representing noise
or texture.

H1 denotes the 1-dimensional Hausdorff measure,

α, λ > 0 are tuning parameters.

With the above notations, the first two terms compose F1(u)

(non-convex), while the third term makes F2(v).
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Rudin-Osher-Fatemi (1992)

inf
(u,v)∈BV ×L2

{
∫

|∇u| dx + λ‖v‖2
L2 , f = u + v

}

,

∫

|∇u| dx denotes |u|BV , λ > 0 is a tuning parameter.

f ∈ L2 is split into u ∈ BV , a piecewise-smooth function
and v = f − u ∈ L2 representing noise or texture.

With the above notation, F1(u) = |u|BV , and F2(v) = ‖v‖2
L2 .

• Loss of Intensity: Let f = χD be the characteristic function
of a disk D centered at 0 of radius R. The minimizer (u, v) of
ROF is given by:

u = (1 − 1

λR
)χD, v =

1

λR
χD.
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ROF (cont.)

• Replacing ‖v‖2
L2 with ‖v‖L1 was proposed by Cheon,

Paranjpye, Vese and Osher as a Summer project, and
further analysis by Chan and Esedoglu, Esedoglu and
Vixie, Allard, among others.
Remark: Oscillatory components do not have small norms in
L2 or L1.
• To overcome these drawbacks, we have to relax the
conditions on u or v = f − u. One way is to use a
non-convex regularization on u (like in Mumford-Shah
model), that is weaker than BV. Another way is to use
weaker norms than the L2 norm.

• Here we choose to keep BV, and consider weaker norms

than L2.
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Meyer models (2001)

• Mumford-Gidas (2001) also shows that natural images
are drawn from probability distributions supported by
generalized functions.
In 2001, Y. Meyer proposed (weaker norms)

inf
(u,v)∈BV ×X2

{

|u|BV + λ‖v‖X2
, f = u + v

}

.

Here X2 is either G, F , or E.
• The space G = div(L∞) consists of distributions v which
can be written as

v = div(~g), ~g = (g1, g2) ∈ (L∞)2 , with

‖v‖G = inf

{
∥

∥

∥

∥

√

(g1)2 + (g2)2
∥

∥

∥

∥

L∞

: v = div(~g), ~g ∈ (L∞)2
}

.
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Meyer (cont.)

• The space F = div(BMO) consists of distributions v
which can be written as

v = div(~g), ~g = (g1, g2) ∈ (BMO)2 , with

‖v‖F = inf
{

‖g1‖BMO + ‖g2‖BMO : v = div(~g), ~g ∈ (BMO)2
}

.

We say that f belongs to BMO, if

‖f‖BMO = sup
Q⊂Ω

1

|Q|

∫

Q
|f − fQ| < ∞,

where Q ⊂ Ω is a square (with sides parallel with the axis).

Here fQ = |Q|−1
∫

Q f(x, y) denotes the mean value of f over

the square Q.
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Meyer (cont.)

• We say a generalized function v belongs to the space E if
it can be written as v = ∆g, such that

sup
|y|>0

‖g(. + y) − 2g(.) + g(. − y)‖L∞

|y| < ∞.

Both G = div(L∞) and F = div(BMO) (as defined
previously) consist of first order derivatives of vector
fields in L∞ and BMO, respectively.

E (as defined above) consists of second order
derivatives of functions satisfying the Zygmund
condition.

In R
2: BV ⊂ L2 ⊂ G ⊂ F ⊂ E.

Difficulty: How to solve these models in practice.
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Approximating Meyer G-model

Vese-Osher (2003): model oscillatory components as first
order derivatives of vector fields in Lp, for 1 ≤ p < ∞.

inf
u,~g

{

|u|BV + µ‖f − u − div(~g)‖2
L2 + λ

∥

∥

∥

∥

√

g2
1 + g2

2

∥

∥

∥

∥

Lp

}

.

f ∈ L2 is decomposed into u + v + r, such that u ∈ BV ,
v = div(~g) ∈ div(Lp), and r = f − u − v ∈ L2 is a residual
which is negligible numerically for large µ.

As µ, p → ∞, this model approaches Meyer G-model.

Other motivating work on the G space includes Aujol et
al, Aubert and Aujol, S. Osher and O. Scherzer, among
others.
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Osher-Sole-Vese (2003)

In 2003, S. Osher, A. Sole, and L. Vese model
oscillatory components as v = ∆g, where g ∈ Ḣ1. I.e.
v ∈ Ḣ−1.

inf
u,v

{

|u|BV + λ
∥

∥∇(∆−1v)
∥

∥

2

L2 , f = u + v
}

.

L. Lieu and L. Vese (2005) recently consider modeling
oscillatory components as v ∈ Hs, s ∈ R

−,

inf
u,v

{

|u|BV + λ

∫

Ω

∣

∣

∣
(1 + |ξ|2)s/2v̂(ξ)

∣

∣

∣

2
dξ, f = u + v

}

.
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Modeling Oscillatory components with div(BMO)

We consider a strictly convex variational problem:

inf
u,~g

{

F1(u,~g) = |u|BV + µ‖f − u − div(~g)‖2
L2

+ λ [‖g1‖BMO + ‖g2‖BMO]
}

A more isotropic problem: ~g = ∇ · g, i.e. v = ∆g,

inf
u,g

{

F2(u, g) = |u|BV + µ‖f − u − ∆g‖2
L2

+ λ [‖gx‖BMO + ‖gy‖BMO]
}

Here, f = u + v + r, where r ∈ L2 is a residual. As µ → ∞,

these models approach Meyer F -model.
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Minimizing F1(u,~g)

F1(u,~g) = |u|BV + µ‖f − u − div(~g)‖2
L2

+ λ
[

‖g1‖BMO + ‖g2‖BMO

]

=

∫

Ω
|∇u| + µ

∫

Ω
|f − u − ∂xg1 − ∂yg2|2

+ λ
[ 1

|B1|

∫

Ω
|g1 − g1,B1

|H(φ1) +
1

|B2|

∫

Ω
|g2 − g2,B2

|H(φ2)
]

,

φi is the level set of Bi, H is the heaviside function, and

gi,Bi
=

R

Ω
giH(φi)

R

Ω
H(φi)

,

Bi maximizes ‖gi‖BMO.

Modeling Oscillatory components with Besov Spaces – p.14/42



Minimizing F1(u,~g) (cont.)

Keeping B1 and B2 fixed for one iteration, and minimizing
F1(u,~g) with respect to its variables, we obtain

−div

( ∇u

|∇u|

)

− 2µ(f − u − ∂xg1 − ∂yg2) = 0,

2µ∂x(f − u − ∂xg1 − ∂yg2)

+
λH(φ1)

|B1|

[

g1 − g1,B1

|g1 − g1,B1
| −

1

|B1|

∫

Ω

g1 − g1,B1

|g1 − g1,B1
|H(φ1)

]

= 0,

2µ∂y(f − u − ∂xg1 − ∂yg2)

+
λH(φ2)

|B2|

[

g2 − g2,B2

|g2 − g2,B2
| −

1

|B2|

∫

Ω

g2 − g2,B2

|g2 − g2,B2
|H(φ2)

]

= 0,
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Minimizing F2(u, g)

F2(u, g) =

∫

|∇u| + µ

∫

Ω
|f − u − ∆g|2

+ λ
[ 1

|B1|

∫

Ω
|gx − gx,B1

|Hε(φ1)

+
1

|B2|

∫

Ω
|gy − gy,B2

|Hε(φ2)
]

Hε is a smooth approximation of the Heaviside function
H, and

the unknown sets B1 and B2 maximize the BMO norms
of g1 = gx and of g2 = gy,

φi is a level set of Bi.
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Minimizing F2(u, g) (cont.)

For fixed B1 and B2 (at one iteration), minimizing F2(u, g)
w.r.t. u and g, we obtain the Euler-Lagrange equations:

− div

( ∇u

|∇u|

)

− 2µ (f − u − ∆g) = 0,

− 2µ∆(f − u − ∆g) − λ

|B1|

[

∂x

(

gx − gx,B1

|gx − gx,B1
|Hε(φ1)

)]

+
λ

|B1|2
(
∫

gx − gx,B1

|gx − gx,B1
|H(φ1)

)

∂xHε(φ1)

− λ

|B2|

[

∂y

(

gy − gy,B2

|gy − gy,B2
|Hε(φ2)

)]

+
λ

|B2|2
(
∫

gy − gy,B2

|gy − gy,B2
|Hε(φ2)

)

∂yHε(φ2) = 0,
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Numerical results and comparisons

ROF, v ∈ L2 v = div(~g) v = ∆g

Remark: The case v = ∆g is more isotropic, and better cap-

turing repeated patterns.
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Homogeneous Besov spaces

Consider the Poisson and the Gaussian kernels,

Pt(x) = (e−2πt|ξ|)∨(x) = cn
t

(t2 + |x|2)(n+1)/2
.

Wt(x) = (e−2πt|ξ|2)∨(x) = ant−n/2e−
π|x|2

2t .

For each g ∈ Lp. Let w(x, t) = Pt ∗ g(x), and
h(x, t) = Wt ∗ g(x). We have

∂2w
∂t2 = −∆w (the wave equation).

∂h
∂t = ∆h (the heat equation).
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Besov spaces (cont.)

Let α ∈ R, k,m ∈ N0 s.t. k > α and m > α/2, 1 ≤ p ≤ ∞. We
say g ∈ Ḃα

p,q, if

‖g‖Ḃα
p,q

=

(

∫
∣

∣

∣

∣

tk−α

∥

∥

∥

∥

∂kPt

∂tk
∗ g

∥

∥

∥

∥

Lp

∣

∣

∣

∣

q
dt

t

)1/q

≈
(
∫
∣

∣

∣

∣

tm−α/2

∥

∥

∥

∥

∂mWt

∂tm
∗ g

∥

∥

∥

∥

Lp

∣

∣

∣

∣

q
dt

t

)1/q

< ∞, q < ∞.

‖g‖Ḃα
p,∞

= sup
t>0

{

tk−α

∥

∥

∥

∥

∂kPt

∂tk
∗ g

∥

∥

∥

∥

Lp

}

≈ sup
t>0

{

tm−α/2

∥

∥

∥

∥

∂mWt

∂tm
∗ g

∥

∥

∥

∥

Lp

}

< ∞, q = ∞.
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Some properties of Ḃα
p,q

• Denote Isv = (−∆)s/2(v) = ((2π|ξ|)sv̂(ξ))∨, We have

Is : Ḃα
p,q → Ḃα−s

p,q , isometrically (injectively).

• Define τδf(x) = f(δx), δ > 0. We have

‖τδf‖Lp(Rn) = δ−
n

p ‖f‖Lp(Rn), and

‖τδf‖Ḃα
p,q(Rn) = δ−

n

p
+α‖f‖Ḃα

p,q(Rn), for α < 0, 1 ≤ p, q < ∞.

• The following embedding holds,

Ḃα1

p,q1
⊂ Ḃα2

p,q2
,

if either α2 ≤ α1, or α1 = α2 and 1 ≤ q1 ≤ q2 ≤ ∞.
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Modeling oscillatory components with homogeneous Besov spaces

• Meyer E-model corresponds to modeling

u ∈ BV, and v = ∆g, g ∈ Ḃ1
∞,∞. I.e. v ∈ Ḃ−1

∞,∞.

• (Joint work with J. Garnett and L. Vese) We consider
decomposing f = u + v, such that

u ∈ BV, and v = ∆g ∈ Ḃα−2
p,∞ , g ∈ Ḃα

p,∞, 0 < α < 2, 1 ≤ p ≤ ∞,

with the minimization problems

infu,g

{

Ja(u, g) = |u|BV + µ‖f − u − ∆g‖2
L2 + λ‖g‖Ḃα

p,∞

}

infu

{

Je(u) = |u|BV + λ‖f − u‖Ḃα−2
p,∞

}

• Aujol & Chambolle: Meyer E-model (wavelets).
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Minimizing Ja, p < ∞

Ja(u, g) = |u|BV + µ ‖f − u − ∆g‖2
L2 + λ‖g‖Ḃα

p,∞
,

=

∫

Ω
|∇u| + µ

∫

Ω
|f − u − ∆g|2 + λ sup

t>0
‖Kα

t ∗ g‖Lp ,

where Kα
t = t2−α ∂2Pt

∂t2 or Kα
t = t1−α/2 ∂Wt

∂t .
In practice, we consider only a discrete set

{

ti = 2.5τ i : τ = 0.9, i = 1, ..., N = 150
}

.

These ti’s are chosen so that discretely Pt1(x) is a constant

and PtN
(x) approximates the Dirac delta function.
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Algorithm

Given an initial guess (u0, g0).

Compute t̄0 = argmaxt∈{t1,...,tN} ‖Kα
t ∗ g0‖Lp .

Suppose (un, gn, t̄n) is known. Compute (un+1, gn+1) via
(

∂Ja

∂u
=

)

, 0 = −∇ ·
( ∇u

|∇u|

)

− 2µ(f − u − ∆g)

(

∂Ja

∂g
=

)

, 0 = −2µ∆(f − u − ∆g)+

λ
∥

∥Kα
t̄ ∗ g

∥

∥

1−p

Lp Kα
t̄n
∗
(

∣

∣Kα
t̄n
∗ g
∣

∣

p−2
Kα

t̄ ∗ g
)

Suppose t̄n = tk. Compute
t̄n+1 = argmaxt∈{tk−1,tk,tk+1} ‖Kα

t ∗ gn+1‖Lp . Continue...
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Minimizing Ja, p = ∞

Ja(u, g) = |u|BV + µ ‖f − u − ∆g‖2
L2 + λ‖g‖Ḃα

∞,∞
,

=

∫

Ω
|∇u| + µ

∫

Ω
|f − u − ∆g|2 + λ sup

t>0,h∈L1

〈Kα
t ∗ g, h〉
‖h‖L1

.

• Algorithm: The steps are the same as in the previous case,
but now at each iteration we need to compute

h̄n = argmaxh∈L1

〈

Kα
t̄n
∗ gn, h

〉

‖h‖L1

, via

hτ =
Kα

t̄ ∗ g

‖h‖L1

−
〈

Kα
t̄ ∗ g, h

〉

‖h‖2
L1

h

|h| .
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Minimizing Je, p < ∞

Je(u) = |u|BV + λ‖f − u‖Ḃα−2
p,∞

=

∫

Ω
|∇u| + λ sup

t>0
‖Hα

t ∗ (f − u)‖Lp ,

where Hα
t = t2−αPt or Hα

t = t1−α/2Wt.
Suppose (un, t̄n) is known. Compute (un+1, tn+1) via

•
(

∂Je

∂u
=

)

, uτ = ∇ ·
( ∇u

|∇u|

)

+

λ
∥

∥Hα
t̄n
∗ (f − u)

∥

∥

1−p

Lp
Hα

t̄n
∗
(

|Hα
t̄n
∗ (f − u)|p−2Hα

t̄n
∗ (f − u)

)

.

• tn+1 = argmaxt∈{tk−1,tk=t̄n,tk+1} ‖Hα
t ∗ (f − un+1)‖Lp .
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Minimizing Je, p = ∞

Je(u) = |u|BV + λ‖f − u‖Ḃα−2
∞,∞

=

∫

Ω
|∇u| + λ sup

t>0,h∈L1

〈Hα
t ∗ (f − u), h〉

‖h‖L1

.

• Algorithm: The steps are the same as in the previous case,
but now at each iteration we need to compute

h̄n = argmaxh∈L1

〈

Hα
t̄n
∗ (f − un), h

〉

‖h‖L1

, via

hτ =
Kα

t̄ ∗ (f − u)

‖h‖L1

−
〈

Kα
t̄ ∗ (f − u), h

〉

‖h‖2
L1

h

|h| .
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Barbara

f
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Using Ja with u ∈ BV , v ∈ B−0.5
1,∞

u f−u+100

Parameters: α = 1.5, p = 1, µ = 1, and λ = 1e − 04.
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Using Ja with u ∈ BV , v ∈ B−1
1,∞

u f−u+100

Parameters: α = 1.0, p = 1, µ = 1, and λ = 3e − 03.
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Using Ja with u ∈ BV , v ∈ B−1.5
1,∞

u f−u+100

Parameters: α = 0.5, p = 1, µ = 1, and λ = 0.5.
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Using Ja with u ∈ BV , v ∈ B−1
∞,∞

u f−u+100

Parameters: α = 1, p = ∞, µ = 10, and λ = 1.
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Using Je with u ∈ BV , v ∈ B−1
1,∞

u f−u+100

Parameters: α = 1, p = 1, λ = 1500.
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Coffee beans

f
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Using Je with u ∈ BV , v ∈ B−1
1,∞

u f−u+100

Parameters: α = 1, p = 1, λ = 1500.
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Coffee beans with additive Gaussian noise

f
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Using Je with u ∈ BV , v ∈ B−1
1,∞

u f−u+100

Parameters: α = 1, p = 1, λ = 2500.
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Stair-casing effects of total variation

The regularization term
∫

|∇u| dx creates stair-casing
effects in u in regions where f is very oscillatory.
To overcome this, One could replace

∫

|∇u| dx with
∫

ϕ(∇u) dx, where

ϕ(z) ≥ 0 is convex (strictly convex near 0),

lower semicontinuous, increasing and has linear growth
at ∞.

Related work:

G. Aubert and L. Vese.

P. Schultz, E. Bollt, R. Chartrand, s. Esedoḡlu, K. Vixie.

S. Levine.

among others.
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Barbara with Gaussian noise

f

Modeling Oscillatory components with Besov Spaces – p.39/42



Using Ja with v ∈ B−1
2,∞

u f−u+100

ϕ(∇u) = −β +
√

|∇u|2 + β2, β =
√

10,

α = 1, p = 2, µ = 10, and λ = 0.01.
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Conclusion

In these models, inteads of imposing ‖v‖Lp on the
oscillatory component v, we impose ‖Kt ∗ v‖Lp for some
t > 0, where Kt is a smoothing kernel.

Use p = 1 for texture (repeated patterns)
decomposition. M. Green also shows that texture-like
natural images when being convolved with a kernel of
zero mean has a laplacian probability distribution.

Use p = ∞ for cases where one wants to capture more
oscillations including non repeated patterns.
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Thank You!

This presentation consists of materials from these papers:

1. T. Le and L. Vese, Image decomposition using total variation
and div(bmo), Multiscale Modeling and Simulation, SIAM
Interdisciplinary Journal, vol.4, num. 2, pp. 390-423,
June 2005.

2. J. Garnett, T. Le, and L. Vese, Image decompositions using
bounded variation and homogeneous Besov spaces, UCLA CAM
Report 05-57, Oct. 2005.
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